
Page G Plan
Remote access to local console applications 

Mar 10, 1992 

The local station console interface is simple and can be emulated from any host platform. It 
allows remote emulation of many page applications already written without replicating their 
functionality on the host. It is already supported from a Macintosh, workstation, Vax, or 
another local station console. This note describes the logic used to facilitate implementation 
on other platforms. 

The local console display consists of 16 lines of 32 characters each. These 512 characters are 
kept in an image buffer starting at address 0x000400 in the target station. The first 32 
characters are the top line, the next 32 characters are the second line, etc. Alphabetic 
characters are upper case only; lower case characters need not apply. In addition, the sign bit 
of each character byte signifies that the character is displayed in inverse video. 

The basic scheme for capturing the display is simply to make a periodic request for the 512 
bytes of image buffer memory. Any characters which change are then updated on the host's 
display or window. The cursor location can be monitored by the memory word at 0x000F7C 
for the column# 0-31 and the word at 0x000F7E for the row# 0-15. The host display may 
update to show this cursor position on its own display, if needed. Writing to these two words 
can change the cursor position to allow a mouse click to set the cursor location, for example. 

Typing on the screen is supported by sending the character code to memory address 
0x000F69 using a one-byte memory setting. Note that the sign bit of the new character must 
be set to announce to the local station system that the character is new. The following 
character codes are used: 

0x1E [lbracktop] Home (top line, left column) 
0x0B [arrow-up] Up arrow 
0x0A [arrow-down] Down arrow 
0x08 <- Left arrow 
0x0C -> Right arrow 
0x0D <= Return (to start of current line) 
0x1B ESC Keyboard interrupt 

To each code add 0x80 to produce the byte value used in the setting. 

The state of the push-button lites is given by the two bytes at 0x000F78 (units) and 0x000F79 
(modes). The bit assignments of these lites are as follows: 

Bit# Units Bit# Modes 
7 (unused) 7 (unused) 
6 Eng 6 A/D 
5 Volts 5 D/A 
4 Hex 4 Nom 
3 Raise 3 Tol 
2 Lower 2 Set 
1 Left-right 1 Keyswitch 
0 Up-down 0 Keyboard int 

To make a change in the lites selection, note that there are two mutually exclusive groups of 
lites, the A/D-D/A-Nom-Tol-Set group and the Eng-Volts-Hex group. Selection of any lite in 



a group means that the other lites in that group should be turned off. The local station only 
updates these latching mutually-selectable lites when a push-button is pressed, leaving these 
bits open to remote access. 

The other lites are DC. Turning on a given bit turns on the lite; turning off the bit turns off the 
lite. The page applications monitor the state of the lites to know what to do. With the local 
console in place, pressing the switches is one way to control these lites; settings from a 
remote host to the proper lites byte is another. 

Since these other lites are DC, however, the local station updates the lites to reflect the current 
state of the switches every cycle. This makes it hard for a remote host to confidently change 
the lites between the last update and the page application's monitoring of it. A solution to 
this problem lies in recognizing that the hi bit of each lites byte is unused, due to the 
hardware interface design. When a remote host makes a setting to one of these bytes, it 
should also set the hi bit to signal that it is new from the host, much like the keyboard 
character logic. When the local station processing is about to update the lites byte, it should 
check the hi bit of the present lites byte value; if it is set, merely clear that bit, else update the 
lites byte normally. This gives a chance for the page application to notice the remote setting, 
but it also builds in an automatic reversion to maintaining the lites according to the current 
console switch states. 

Knob control is not at present supported, due to the way it was originally implemented. 
Every cycle, the latest reading of the knob counter from the console interface is monitored for 
changes. If a remote setting changed the value of this byte, it would only be overwritten the 
next cycle, at least if there is a local console attached. Without a local console, manipulation of 
the knob byte reading could effect knob control. If it is important to implement knob control, 
the system should be changed to work with knob count differences. Then the remote host 
could write to this difference count byte, which would be cleared when used. 

In summary, the data acquisition is to periodically collect the 512 bytes of image buffer 
memory, and also the 8 bytes from 0x000F78–0x000F7F, to obtain the lites bytes and the 
cursor position words. Settings are accomplished by writing to either of the two lites bytes or 
to the keyboard character input byte, or perhaps to the cursor position words. 

Page G Plan p. 2


